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SUMMARY

A small deflection plate theory is developed which includes higher order
approximations to the effects of transverse shear. The governing equa-
tions and associated boundary conditions are developed by a variational
method. The theory is sufficiently general to encompass anisotropic,
laminated, composite, circularly curved, cylindrical plate elements of
nonsymmetric cross section. Specific applications are made to the
bending and the axial compression buckling of simply supported flat
plates and to the axial compression buckling of curved plates and

shells having classical, simple supports. It is shown that the effects
of interlaminar shear can be significant in composite constructions

which use very high strength fiber reinforcement.
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FOREWORD

The work reported herein constitutes a portion of a continuing ef'tort
being undertaken at Stanford University for the Eustis Directorate,
U.5. Army Air Mobility Research and Development Laboratory under
Contract DAAJO2-70-C-0075 (Project 1FO61102A33F) to establish accurate
theoretical prediction capability for the static and dynamic behavior
of aircraft structural components using both conventional and uncon-
ventional materials. Predecessor contracts supported investigaticns
which led, in part, to the results presented in References 10, 11, 1k,
and 195.
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INTRODUCTION

The desire for significantly increased efficiency in aerospace structures
has encouraged the development of high-strength fiber composites for use
in laminated plate and shell elements. However, to realize the potential
inherent in composite construction, the theoretical prediction capability
must be improved in order to match laboratory experience. Plate and shell
theories which deal selectively with only some of the characteristics of
laminated, composite constructions are becoming inadequate for the very
high strength fiber composites being developed. In the case of laminated
plates and shells, researchersl-h have been concerned primarily with the
anisotropic nature of layered constructions under the assumption that the
interlaminar shear effects are negligible. Whereas this assumption is
reasonably valid for composites with relatively high ratios of intcrlaminar
shear to laminae extensional moduli (for example, glass-epoxy), there is
reason to question this assumption for scme of the newer composites (for

example, boron-epoxy) wherein relatively low ratios of these moduli exist.

The literature on the bending and buckling of laminated, composite plates
and shells may be considered to begin with the work of Smith (Reference 1).
Therein, Smith considered the bending of a two-layered rectangular plate
with orthotropic layers oriented so that the natural axes of each layer
made equal but opposite angles with the coordinate axes. Plates and shells
of this construction are referred to as being of the Smith type. By over-
looking coupling between bending and membrane stresses, Smith concluded
erroneously that a plate of this construction behaves in the same manner
as the conventional orthotropic plate. Reissner and Stavsky2 formulated
the composite plate provlem in terms of an Airy stress function and the
lateral deflection. For the Smith-type plate, they established the ex-
istence of interaction between bending and extensional stresses in plates
under direct and lateral loads, respectively. In laminated plates sym-
metrical about a median surface, this coupling vanishes. 1In addition,
Reissner and Stavsky noted from their solution that when the angle be-
tween the coordinate and laminae natural axes is 45 degrees in a Smith-

type plate, the membrane shear rigidity has no effect on the solution.



“n Reference 3, the authors extended the Reissner-Stavsky formulation to
sheiliss they apptied their solution to a circular, cylindrical, composite
shei! of Smith-type construction subjected to internal pressure. The
coupl ing phenomenon found in the plate analysis2 was present also in that

ot the shel!l. The authors considered the validity of the Donnell approxi-

mationsi’ when applied to composite shells and concluded that except for

highly anisotropic composites (Ell/E22 > 1000), any error introduced into
composite-shell theory above that introduced into classical shell theory }
is negligible. Whitney and Leissah reformilated the anisotropic plate

problem in terms of the inplane and lateral displacements, and the stress
resultants. They examined several bending, stability, and vibration

problems not previously considered.

The principal thrust of the foregoing studies was to show the effects of
laminae anisotropy and variations in laminae orientations on the behavior
of composite plates and shells. As all of the solutions relied on the
Kirchhoff-Love hypothesis, the effects of interlaminar shear were neglected
entirely. With regard to interlaminar shear effects, Paga.nob pointed out
their importance in discussing the differences between the flexural and
extensional moduli of composite materials. He used an approximate

method of Hoff (see Reference 6) in calculating the effect of shear on
lateral deflections for the special case of bidirectional composite beams
in cylindrical bending.

A more rigorous analysis of interlaminar shear effects in the bending of
T

composite plates was presented by Whitney. This solution was based on

the anisotropic plate equations, including the effects of transverse shear,
developed by Ambartsumwan.8 Whitney modified the Ambartsumyan equations to
accommodate composite plates, and he also included coupling between the two
transverse shearing strains not present in the Ambartsumyan formulation.
The solutions obtained by Whitney were applicable primarily to composite
plates symmetrical about a median §lane; for unsymmetrical constructions

he considered only a plate strip. In addition, Whitney's results were
confined to the consideration of the effects of large length-to-thickness

ratios.
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By eiténding the work of Khot9 to include a first approximation to the
effects of interlaminar shear, Tayior and Mayerslo obtained sciutions for
axia. compression buckling of composite, circular, cylindrical shells.

in their analysis, Taylor and Mayers used a modified-Reissner variatiocnal
princip]ell in conjunction with the constitutive and strain-displacement
reiations given in Reference 3 and the curvature relations analogous to
those used in Reference 12. Results were obtained for boron- and glass-

epoxy cylinders.

The theoretlca. deveiopment and analysis presented herein take an essen-
tia..y different approach from all of the foregoing. These formuiations
were based on cliassical plate theory in that they used the equations

of motion in terms of stress resultants and the Kirchhoff-Love hypothesis
to estabiish the governing equations. By contrast, the present analysis,
suggested by the sandwich-plate developments given in References 13 and 1k,
makes use of nonclassical kinematics and a variational principle to estab-
1ish the governing equations and associated boundary conditions. The total
potential energy developed in a composite plate during bending is formulated
in terms of the displacements, and the variation with respect to the in-
dependent displacement functions yields the governing differential equations

and boundary conditions in accordance with the potential energy principle.

The model used is a genera]izapion of that of Hoff in Reference 13 for
sand;ich piates. Hoff's model consisted of a core enclosed by two mem-
brane face sheets. The core was considered to extend to the median planes
of the two face sheets and to carry only transverse shear. The behavior
of two adjacent laminae in a composité plate can be represented by a
similar modei under the following assumptions:
i+ The laminae behave as anisotropic membranes with all of the
direct stress carrying material located at the median surfaces.
e ;he matrix material between adjacent median surfaces carries
ai. of the transverse shear.
lience, the composite plate is considered to be a multilayered sandwich
plate with the matrix material acting as cores and the matrix-fiber

combination acting as the membranes. It should be noted that the matrix



is considered to carry two types of stresses which do hot couple: the
matrix acts in conjunction with the fibers to transmit the laminae 'stresses,

and it acts alone to resist the stresses due to transverse shear.

i .
1 . ' i

1 :
For ease of analysis, compared with the methods, for example, of Réferences
2, 3,and 4, a vector-matrix technique is introduced. The ing;lane displace-!
ments of the laminated plate are described hy two sets of functlons, u ]
and v, (k =1,2,...,n) , where k designates any. - the n lé.yers. , -
These sets of functions are considered to constitute two n-di;nensional vec-
tors over the vector field of the plate reference surface, and the total
potential energy is formulated in terms of these two vectors &and the lat- .
eral displacement function, w . Approxlmtions to any degree of accuracy
of the two vectors are then introduced by means of linear tra.nsfomtlons.
These approximations give the two sets of displacement hmbtions in terms
of smaller sets of generalized displacement functions. The Euler ‘equations
and all associated boundary conditions are then developed in terms of the
approximated vectors and the lateral displacement. Actually, 'the Eulex" Y
equations corresponding to the two vector quantities are, 'in effect, sets .
of scalar equations involving the generalized displaceneqt funct:i.qr}s de- ’
scribing the plate behavior. The theory is not restricted to the preserva-
tion of plane sections and can be extended.readily to include. the definition
of a separate lateral deflection function for elch lamina. This gppréach;
was adopted in Reference 15 in studying the bending 'and' buckling of layered ::
beams. Results of the analysis for several bending and buckling problenjs
of plate and shell elements are presented in the form of charts. Details .
of all theoretical developments appear in the appénd_ixes. ;

B T Erp——



[ + BASIC THEORY | ;

STATEMENT OF PROBLEM AND BASIC ASSUMFTIONS :

The problem considered is the effect of interlaminar shear ‘on the bending
" and buckling of composdte,‘flat plates and circularly curved cylindrical
shells. ' : , ‘ ‘ ; :

' 4 0 !
! : : !

The composite, structures are consldered to cons1st of n laminae of
équal thickness, with each lamina composed of & matrix’ of f1n1+e shear
transm1ss1b111ty reinforced by continuous fibers in two perpendicular dl-

rectlons " The flber orlentatlon nay be different for dlfferent layers.

rThe’analytical modél (see Figureé 1) consists of n homogeneous, aniso-
tropic laminae. Two tangent-plane displacement functlons, Uy and Vi
(k=1 2,...,n) are assigned 'to each lamins. In addition, there is a
lateral dlsplacement function, w , common to all n laminae: 'The: .
radius of curvature,' R , 1is considered to be the same for all laminae
and equal to the radius of the laminate medlan surface.

i

;
Each lamlna is assumed to be in a state of plane stress. ’In the trans-
verse planes, only shearlng stresses are con51dered, all 'other stresses
are assumed to be negllglble. The transverse shearlng stresses are .
assumed to be carried by the matrlx materlal. No restrlctlon 1s placed
on the preservatlon of plane sectlons. 'Flnally, the lateral deflectlons
of the comp031te structure are assumed to be small in comparlson with 1ts
| overall thlckness.x : U )

!
!

STRAIN-DIS PLACEMENT RELATIONS FOR A LAMINA

! '

For each lamina, when the!Donnell5 approximations are used,’the’strain-?

. . | ;
displacement relatlons can be expressed as ; !

!
[ !

1



Figure 1. Analytical Model of Composite Plate.
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where, as shown in Figure 1, the radial displacement is positive when

directed inwardly.

TRANSVERSE SHEAR STRAIN-DISPLACEMENT RELATIONS BETWEEN ADJACENT IAMINAE

As derived in Appendix I, the transverse shear strains between adjacent

laminae are given in terms of the inplane and lateral displacement func

tions of the k and k + 1 laminae as

7(k) - ow YW = Y4

% ox t
(2)
(k) _ Eﬁ % Vi+1
ot ay "

CONSTITUTIVE RELATIONS FOR A LAMINA

The relations between the inplane stresses and strains are those which
govern the behavior of a homogeneous, anisotropic medium in a state of
plane stress. In matrix notation, these relations are16

[ (x)] Kk K k i
W[ @ ) [
K K N Kk . o
‘ |
(k) LAk (k k) | k)
Ty c]%) 023) CSB) | 7iy ;

' “ - - -



where the matrix elements, C§j

constants bylO

k)

, are related to the engineering material

\
J(k) . I . 2 2 . b
€}y = Cyp coso + 2((,12 + 2C33) sin"g cos™@ + C,, sin'g
JkY A . 2 2 ol I
Cin = (Cll t Cop = h033) sin”® cos™® + Cy, (sin'g + cos'9)
(k) _ . 3
Clj = (Cll - Cp - 2033) sin 6 cos”8 ;
+ (C12 - Cop * 2033) sin“g cos 6
(k) _ o - 2 I
oy = Cpp sin'e + 2(C12 + 2033) sin'@ cos @ + C,, cos 0 (&)
k , q
ng) = IN{cHER e P 2C33) 31n39 cos 0
< ) . 3
+ (012 - Coy + 2033) sin 6 cos”@
(k) _ o e 2
Ci3 = (Cll + Cpp = 2Cy5 - 2033) sin 2] cosue
+ C,, (sin'e + cos @) J
33
and
. )
11 — 3
- T V12
SR
12 1 -
Vip >
. (5)
o - 02
22 1 2
iz
C3s = S0 .
J

POTENTJAL ENERGY FORMULATION

Strain Energy

The strain energy stored in a laminated, circularly curved plate consists

of the strain energy associated with the plane state of stress of the

laminae as developed in the classical manner from Equations (1) and (3),

and the strain energy due to transverse shear as derived in Appendix I.



Thus, the strain energy is expressed in terms of the displacements as

Lb
- = T el 2 et R *
k=i 2 6o ox dy R oy ox ox
_ ) auk ) avk W (k) au'k avk avk W
oy el — -y | —r— = =
i ox dy R dy dx oy R
[ 0 ov W s ov o ov
o oo 25, o0 (_k _ _)+ ot (ﬁ ) _z) (_"z , _.15) —
L ox n oy R dy ox oy ox
n-1l LDb 2 2
Gt ow = ow Vv, -V
+ zz 2 J[JF (__._ EE___EEiL) 4-(—— -.Ji___lﬁﬂk) dxdy
— 2 ox it oy i
k=1 00 (6)

Potential of Applied Loads

Two types of loadings are considered as shown in Figure 2: distributed,
lateral surfac- .adings, and compressive edge loadings along the edges

x =0 and x = o . The potential of the applied loads for the two cases

L b
-ff [pw] dxdy
00

and (7)
Lb N o0 2

PR o

e 2 \ox

In the first of Equations (7), w 1is the total displacement measured from

is given, respectively, by

<3
il

<
]

the undeformed state, whereas in the second of Equations (7), w 1is the

additional displacement which occurs during a buckling process.

Total Potential Energy

The total potential energy is given by Equations (6) and (7), with either

Nx = 0 for bending problems or p = 0 for axial compression buckling



Distributed Lateral Loading

Uniform Axial Compression Loading

Figure 2. Plate Loading Cases.
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TOTAL POTENTIAL ENERGY IN VECTOR-MATRIX NOTATION

The total potential energy as given by Equation (8) involves 2n + 1
displacement functions, u_ and v (k =1,2,...,n) , and the lateral
displacement function w . From Equation (8), it can be seen that the
set of displacement functions W is subjected to the same differ-

ential and integral operations. This consideration also applies to the
set of displacement functions Vi - Consequently, it is advantageous

to consider these sets of functions as constituting two n-dimensional
vectors, ¥ and V , and to formulate the total potential energy as given
by Equation (8) in vector-matrix notation. This allows the subsequent
operations of variation and integration to be carried out with respect

to the two displacement vectors W and V rather than the 2n displace-
ment functions w, and Vi - With
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and

R 2 o ]
ij
0 0(2) 0 0]
1
_© 0 g?)J
Y i=1,2,3
J=iEe8
the total potential energy can be written now as
£ be [~ ® (av’ W _,)
Uu+VvV = - c ¢+ —+ C l—--1I
2
2 55 11 5 1 dy R
. (aﬁ* av’)‘T Y [~ ST A (av W 4)
+ 0 o l=—+ = 0 — 2 I L G l— - = 1
13 oy x /] ox I ox e dy R
. (aa’ av)'T (av W _,) o
+ S l—+—=)] [—--T)+1]5,. —
23 \y ] dy R B o
. (av’ W _,) . (azf a:?)T (aa’ av)
+ 0. o l—c-c=T)l+cCc. .| —+— =+ — dxdy
23 y R 33 dy ox dy ox
Lb 2 2
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2 85 ox dy t Ox
1 - 2 Jdw .
+_2"‘T.A-ﬁ’-——§’T ?+-§_’T-A v dxdy
t % By t
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REDUCTION OF INDEFENDENT DISPLACEMENT FUNCTIONS IN TOTAL POTENTIAL ENERGY

As shown in detail in Appendix II, the set of displacement functions Uy

(k = 1,2,...,n) may be considered as related by

(x,¥) = F, (x,y,2.) (16
R 1P %k k =1,2,...,n )

where 2z, 1is the distance from any arbitrary reference plane to the

k
center of the kth lamina. When the function Fl is approximated by

the first m+ 1 terms of its power series expansion in z as
* * m *
Fi(x,y,2) = ug(xy) + 2w (xy) + .0+ 20w (x,y) (17)

the displacement functions u,_ given by Equation (16) become

k=12,...,n

Similarly, the set of functions v, can be approximated by

* * m *
Vi, = Vgt z Vo b kg v (19)

kE=1,2n80.,n

Equations (18) and (19) can effect a significant reduction in the number
of independent displacement functions for multilayered plates with n 2”1
these two sets of equations can be expressed in vector-matrix notation as,

respectively,

£l

=q.-7" (20)

and
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and

~* ~

A = 3"

® ~ T
A

- ~ T o~
Kig = 9 - Gy~

the total potential energy as given by

terms of

. g
u and Vv as

T

*

o+

.3 1 o (26)
i (2.
i (28)
1=1,2,3
7= 15853

Equation (15) can be written in
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, where cognizance has been taken of the identities

o
‘ | '

1 ~*T ~Kk
] d : ) A $ A
 and , ‘ ’ ; ' (30)
i , : . ‘ ~')1T C oAk ] :
! = C‘ .l
1J

,Again;‘ for purposes of the presen"t ané.lysis, it must be noted that in

Equation (29), Nx' = O when bending problems are being considered and
lp = 0 'when axial compression buckling problems are being considered.

1

' ; GOVERNING EQUATIONS 'AND BOUNDARY CONDITIONS FOR LAMINATED - FIAT (R » =)
' AND CURVED PIATES '
! ; ' !
Extremlzatlon of the total potentlal energy functional given by Equation

* *
| . (29) with reSpect to w,UW and V . results w the following equi-
librium equatlons and, associated boundary condltions. The details of the
appllcatlon oi the potentlal energy pr1nc1ple are given in Appendlx III

v 0 1

;  Euler Equations
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| ) 'R 22 Ay, 2 ax 'Bye,
i :
| l .. _y * * 2 .
| ! g*T (au b'\? aw i ,
Bt —r— N, 00 (3
; B \ a'x ay’ , X BXE: ' {
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e 3V ow G
A i T P+ BK -3
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R Ox R oy 23
. %% " - (azv* a%?*)
- L - . ...
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e T
T3 o B 23 Tay
e 35" M oy Gy %
- 2t Cpy - -GB—E’ +—4 -V
Oxdy dy t
t ow _, toow
b= = Kyytm — Ky = 0 (33)
o 2 b T

Equations (31), (32) and (33) are the
terms of generalized displacements, co
directions of the displacement w and
- % - *
tors u and V
N
x
problem of axial compression buckling,

, respectively.
is set equal to zero in Equation (

18

governing equations, expressed in
rresponding to equilibrium in the
the generalized displacement vec-
For application to bending problems,
31), whereas for the eigenvalue

t 1is set equal to zero.



Roundary Conditions
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At x =0,L
. (av’ t *) L ¥
t C - ® — + C .
33 dx ay 23 ay
- *
+ ~%¥ au w - w3 *T
Ci3 ° - -; Koy ] e BY = 0 (39)

Equations (34%) and (35) require that either the transverse shearing force
or the lateral displacement vanishes at the plate edges. Equations (36)
and (37) require that either the generalized, axial force vector or the
generalized displacement vector in the direction of the axial force
vector vanishes at the plate edges. Finally, Equations (38) and (39)
require that either the generalized shearing force vector or the gen-
eralized displacement vector in the direction of shearing force vector
vanishes at the plate edges.

In viewing the boundary conditions, Equations (34) through (39), it can

be seen that, unlike conventional plate or shell boundary conditions, there
is no condition at any edge corresponding to either arbitrary moments or
arbitrary rotations. The mathematical model is such that the bending
moment at an edge is represented by the couple of direct stresses acting
through the n laminae. Thus, the bending effect appears indirectly in
the boundary conditions given by Equations (36) and (38). For example,

in the case of simple support there should be no resultant bending

moment formed by the laminae membrane stresses at the edges.

The governing equations and boundary conditions given by Equations (31)
through (33) and (34) through (39), respectively, have been developed for
laminated, composite, anisotropic plate structures characterized by a matrix
of finite transverse shear rigidity reinforced by high-strength fibers. For
application to the case of plates with interlaminar shear effects neglected,
the governing equations and boundary conditions should be used under the con-
dition that GB "Ell . The specialized kinematics of the problem preclude
the case Gp » unless Equations (31) through (33) are coupled by

linear operators into a single governing partial differential equation

20



(of fourth order for plates and eighth order for shells) and, con-
comitantly, the boundary conditions, Equations (34) through (39),

are suitably reduced.
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METHOD OF SOLUTION

For problems wherein the plate or shell properties are orthotropic, with

the natural and coordinate axes coinciding, the vector and mairices K;B 5
~¥

~k
C15 and C vanish in both the governing equations and boundary condi-

23
tions. Consequently, for either a uniform, compressive edge loading or a
sinusoidally distributed surface loading acting on a flat or curved plate

with classical simple-support boundary conditions, the displacement func-

“ tions

2% o inx . m
u = &y cos == sin <
7 a ?ij sin iLx cos Jbﬂ (40)
- imx PLYA
w = gij sin T sin 5

satisfy automatically the governing equations and boundary conditionms.
Substitution of Equations (40) into Equations (31) through (33) leads

10 a system of algebraic equations which may be solved for either bending
(Nx = 0) or buckling (p = 0) problems, as appropriate.

For laminae in which the natural and coordinate axes do not coincide
(anisotropic media), the vector and matrices EEB , EIB’ and 523 do
not vanish; thus, the complexity of the equilibrium equations precludes
a straightforward solution, even with the usually convenient assumption
of simple-support boundary conditions. Solutions for this class of
problems are obtained by applying the direct method of the calculus of
variations to the total potential energy functional (Rayleigh-Ritz
procedure). The minimizing sequences are taken as
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h
T jnix o . jn
a = L j cos 7= sin —-Xb

L
¥ =2 . Jnx it
7 Z 7, sin 4% cos AL

L b
Jj=1
L
Sl ] .
w o= g. sin X i 4 (41)
J L b
=1

where each term of the sequence for w satisfies the geometric boundary
conditions of classical, simple support. Details of the procedure for
solving the problems of bending and buckling of anisotropic tlat plates

are given in Appendix IV.

Equations (40) are used in conjunction with Equations (31) through (33)
to effect solutions for the bending of simply supported, square, com-
posite plates with orthctropic laminae subjected to the loading

P =D, sin %i sin %X . Solutions are obtained corresponding to several
values of the parameter m in Equation (24), and the results are dis-
played in Figure 7. Xguati-ns 41) are used in conjunction with
Equation (29) to obtain solutions for square, flat plates with aniso-
tropic laminae subjected to eiti.er & uriformly distributed swface
loading or a wniform, compressive loading in the axial direction (see
Figure 2); the results are given in Figures L4 through 9. Equations (L4O)
and (31) through (33) are used again to obtain solutions for the buckling
of infinitely long, flat and circularly curved plates subjected to a
uniform compressive loading in the axial direction (see Figure 2), and

the results are presented in Figures 10, 11, and 12.
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RESULTS AND DISCUSSION

The theory developed in this study is intended for application to
laminated plates and shells. However, the equations presented can be
modified easily and applied to a much wider class of problems. In

the development, plates and shells are considered to be composed of a
number of thin laminae; however, there is no requirement that there be
a one-to-one relationship between the laminae in the actual structure
and those of the analytical model. Thus., the complex behavior of, for
example, conventionally thick plates and multilayered sandwich construc-
tions can be approximated by representing the structures as laminates.
Individual lamina can be assigned properties appropriate to the physical
description of the actual structure. The kinematics of the laminae
provide automatically for transverse shear deformations. Then, by
introducing independence of the lateral displacements of each lamina,
the effects of both transverse shear and normal strain can be taken

into account. Ordinarily, such modeling would imply extensive, if not
prohibitive, computations. However, by the introduction of the vectcr-
matrix techniques used in this study, the apparent tediousness of analysis
can.be greatly reduced.

APPLICATION TO LAMINATED, COMPOSITE FLAT AND CURVED PLATES

Validity of "Plane Sections" Assumption

The degree of approximation of the displacement vectors is determined
by the number of columns in the matrix Q appearing in Equations (20)
and (21) and given by Equation (24). In the latter equation, the number
of columns in @ is indicated as m + 1 , where m is left arbitrary.
The effect of the matrix Q on the analysis is to impose a constraint
on the distortion of a transverse cross section. If m were set equal
to unity, cross sections would be constrained to remain plane (but not
normal) after deformation. Higher values of m allow cross sections to
distort into shapes described by higher degree polynomials.
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The choice of a suitable value of m for use in the analyses undertaken
herein is based on the results presented in Figure 3. There, the curves
show the effects of the shear stiffness parameter, GB/EJ1 . on the de-
flections of o laterally loaded, simply supported, square plate as given
by solutions corresponding to various values of m ., The ordinates in
Figure 3 are the maximum, normalized deflections, with normalization
carried out with respect to the deflections of a simiiar\p]ate having
infinite transverse shear rigidity. The plate properties are indicated
in the figure; these properties tend to maximize the effects of trans-
verse shear in plate-type structures. The plate loading is of the type
P =D, sin %i sin %X.

Solutions corresponding to three values of m in Equation (24) are

shown in Figure 3. 1In addition, the solution corresponding to the case
in which no approximation is introduced is shown and.labeled m=n,

The curves of Figure 3 illustrate that only a small increase in accuracy
is obtained by changing from m=1 to m =3 , and that no appreciable
increase in accuracy is obtained in taking m > 3 . In all, the as-
sumption of transverse cross sections remaining plane, implied in using
m=1 , results in a good approximation of the effects of interlaminar
shear for the parameters given in Figure 3. Thus, at least on the “asis
of the results obtained here, the assumption of plane sections remeining
plane but not normal used in Reference 9 appears to be valid. The same
assumption (corresponding to m = 1) is the basis of all subsequent cal-
culations presented in this study. The governing equations and boundary
conditions for flat plates, Equations (31! through (39), are expanded
into scalar form for the case m = 1 and are shown to reduce tc the
Reissner plate theory for homogeneous plates with the effects of trans-

17

verse shear included.

Coupling Between Bending and Membrane Stresses

The coupling between bending and membrane stresses noted in References 2
through 4 is present inthis analysis inthe form of coupling between coef-
ficients of the even and odd powers of z (see Equation 24). The terms

involving even powers of 2z correspond to extensional displacements,
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whooreas terms involving: odd powers otz correcpond to bending displace-
ments.lb Tn the case of structures which are symmetric abcut a median
surtace and have the reference surface (z = 0) coinciding with this
median surtace, the even-powered terms in Equation (24) can have no net
effect on the results. For laminates symmetric about a median surface,
but having the reference surface (z = 0) at any other locavion, the
even- and odd-ééwered terms couple in any solution. This is the case
with the problem results presented in Figure 3 where the reference sur-
face has been taken at the median surface of the extreme lamina. For
nonsymmetric laminates (all other cases considered in this section),
coupling is always present unless a neutral surface can be identified
readily and the reference surface located thereon. In the present
vector-matrix approach, no special consideration need be given the
question of coupling between membrane and bending stresses as the
operations involved, unlike the more conventional techniques (see,

for exemple, References 2, 3, and 4), introduce no additional com-
plexity in that they adjust automatically for any choice of reference

surface location.

Effects of Parameters GlZ/Ell . E22/§ll , and V12/§11 on Bending
of Plates Under lLateral Loading

The effects of variations in the parameters Gl2/Ell ’ E22/Ell , and
V12/Ell on the maximum deflections of a uniformly loaded, square com-
posite plate have been studied, and the results are presented in Figures
4 through 6. 1In each figure, curves corresponding to three different
fiber orientations are shown. CJurve /1) in each case corresponds to &
construction in which the fibers are aligned parallel to the plate edges
and change orientation by 90o increments between adjacent laminae.

Curve (2) corresponds to a construction in which the fibers are alter-
nately aligned parallel. to the plate edges and the plate diagonals;
thus, the fibers change orientation by h5° between adjacent laminae.
Curve (3) corresponds to a construction in which the fibers are always
aligned along the plate diagonals and change orientation by 90O between

adjacent laminae. The other properties are as indicated in the figures.
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Figure 4 displays the effect of variations in GlZ/Ell on maximum plate
deflections and shows that when the fibers are oriented along the plate
diagonals in a square plate, the magnitude of G12 has no effect on thg
deflections. This is che same phenomenon noted by Relssner and Stavsky
in considering a Smith-type plate wherein the angle between the natural
and coordinate axes was h5o. The explanation is that for a uniformly
loaded, square plate, the directions of the principal stresses are par-
allel to the diagonals; hence, when the fibers are parallel to the
diagonals, the laminae transmit no shearing stress and the shear modulus
has no effect. For th2 other two types of construction, Figure 4 shows
the ratio of laminae shear to extensional moduli to have a considerable
effect on the plate behavior. It is evident that constructions of

type (1) are particularly poor choices for composites having low ratios
of G

12/F1
this effect can diminish the potential advantage in using very high

For composites constructed in the manner of type (1),

strength fibers. It is interesting to note that at approximately
G12/Ell = 0.4 the relative rigidities of the constructions reverse.
For ratios higher than O.4 the ability of the laminae to resist inplane
shear exceeds its abllity to resist extension and, hence, the most

favorable construction 1s that wherein relatively high shearing stresses

- can be induced.

The essentially parallel nature of the curves in Figures J and 6 indicates
that while the ratios E22/Ell and le/Ell do, of course, have an ef=-
fect on the bending rigidity, this effect is only slightly influenced by
the type of construction. The differences in deflections obtained for
the three types of construction in Figures 5 and 6 can be attributed,

in accordance with Figure 4, to the effect of GlQ/Ell = 0.2

Effects of Interlaminar Shear on the Bending and Buckling cf Fla! Flates

The effects of interlaminar shear on the bending and buckling of com-
posite flat plates are illustrated by considering the behavior ¢f square,
simply supported plates of varying aspect ratio subjected to elther a
uniformly distributed surface loading or a uniform axial compression

loading. Results, normalized with respect to the behavior of similaer

AUY)
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plates having the shear stiffness parameter GB/Ell -1 , are given in
Figures 7 and 8 for the bending and buckling problems, respectively.
Other physical constants for the plates analyzed are as indicated in
the fipures.

Representative values for GB/E are 0.1 (glass epoxy) and 0.025

(boron-epoxy). This range shouié be representative also of some of

the newer plastic composites under consideration which utilize graphite,
silicon carbide, and beryllium fibers as the reinforcing elements. For
relatively thin plates, b/h > 30 , the bending and buckling are sig-
nificantly influenced by interlaminar shear effects when the shear
stiffness parameter is in the range GB/Ell < 0.0k . On the other
hand, for relatively thicker plates, suy, b/h <15 , the effects of
interlaminar shear are significant when GB/Ell < 0.1 . Of importance
is the fact that for composite plates in the initial portion of the thin
plate range and G-B/Ell < 0.025 , small reductions in the shear stiffness
parameter produce large increases in plate shear flexibility. Thus, in
the bending and buckling analyses of practical thin plates and plate ele-
ments in, say, stiffeners made of very high-strength-fiber composites, such

as boron-epoxy, interlaminar shear effects should not be overlooked.

Design data for composite plates with properties other than those used

.to obtain the results presented in Figures 7 and 8 can be derived from
charts similar to Figures 4, 5, 6, and 9. Charts such as Figure 9 could
be used to first determine, for example, the buckling stress corresponding
to prescribed values of b/h and G-B/Ell and a reference set of laminae
parameters (G ,/Eyy , E22/Ell 5 Vl2/Ell) . Then, adjustment for the
actual laminae parameters could be made by use of charts similar to

Figures 4 through 6.

Effects of Interlaminar Shear on the Buckling of Curved Plates and

Shells Under Axial Compression

The effects of interlaminar shear on the axial conipression buckling of
long, thin, circularly cylindrical composite plates and shells having

classical simple-support boundary conditions are illustrated by
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considering the behavior of plates having specific R/h and GB/ElJ
values and varying cross-section aspect ratios. The results are pre-
sented in Figures 10 and 11, Figure 10 indicates that the presence of
shallow curvature does not significantly modify the effects of inter-
laminar shear obtained for the buckling of flat plates (R —m») . For
such curvature, the long plate develops only rectangular buckles along
its length (one buckle half-wavelength in the circumferential direction),

the buckle configuration obtained in the case of flat plates.

In Figure 11, the same parameters as those used to develop Figure 10 are
reused; however, a longer ordinate range is shown. The results now
indicate that as the curved plate cross-section aspect ratio, b/h r
approaches the value at which the plate behaves as a shell (shell be-
havior being characterized by a buckled configuration of two or more
half-waves in the circumferential direction), the effects of inter-

laminar shear become negligible. This result means simply that the

range of thin shell behavior, wherein transverse shear effects are

quite small, has been reached. When thicker shells are considered, as

in Figure 12, interlaminar shear, as would be expected, is seen to have

a considerable effect. 1In this figure the critical axial compressive

stress has been normalized with respect to that of similar shells having

a shear stiffness parameter value GB/Ell -1 . The conclusion regarding
the small effect of interlaminar shear in thin composite shells corroborates
the results given in Reference 10. Therein, Taylor and Mayers, on the basis
of a first-approximation theory, studied the effects of interlaminar shear
on the axial compression buckling of thin boron-epoxy and glass-epoxy
cylindrical.shells; they concluded that interlaminar shear effects could

be neglected for thin composite shells using current high-performance

fibers.
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CONCLUDING REMARKS

A small deflection theory has been developed to assess the effects of
interlaminar shear on the bending and buckling of flat and circularly
curved plates of composite construction. The theoreticai developments;
in the form of governing equations and associated boundary:conditions,i
are sufficiently general to encompass anisotropic, circularly,cu;ved;
cylindrical plate elements of nonsymmetric cross.sectibn. ' Specific
applications have been made to the bending and the axial compression
buckling of simply supported flat plates and to the axial cqmpressiqn )
buckling of curved plates and shells having classical, simple supports.

In the cases investigated, the interlaminar shear effects in composite
plates having moderate cross section aspect ra}ios, say, 13 < %‘< 30,
become significant when the shear stiffness parameter, B/E , 1is
less than about 0.04% . For relatively thicker plates, however, the
interlaminar shear effects become significant when the shear stiffness
parameter is less than about 0.1 . In the case of thln, highly curved
plates and shells, the results indicate that the interlaminar shear _
effects are negligible when the shear stiffness parameter.exceeds Fmout
0.01. For practical composite plates and shells of, for example, :
boron- or glass-epoxy construction, effects of interlaminar shear are
shown to be adequately described by a first approximation theory

as that used in Reference 10; such a theory is given by thiS'annlysis
when the exponent, m , in the power series approximation for distribu-
tions through the plate thickness of the inplane displacements is equal
to unity. It is shown also that when m =1 , the governing equations

"

for flat plates reduce to the theory attributed to Reissner for homo-
geneous plates with the effects of transverse shear included.

Though well suited for composite constructions, the present theory is not
limited to such applications. The theofy could be used, for example, to
treat the complex behavior of conventional thick plates and multilayered .
sandwich constructions (for example, normal strain and tramsverse shear
effects in heated plates with irregular thermal gradients through the

40



i

thickness). When solutlom are obta.1 ned w1th the aid of hlgh speed

computers, the vector-matrix develOpment used in the present analysis
affords more than a notatlonal advantage- as the necéessary operations
(obviously tedious .for a fully coupled, anisotropic plate problem) can

be performed by the computer and, hence, they need not .be expanded.

‘ Further, the a.pproxmatlons to the dlaplacement vectors introduced

effect a cons1derable reduction in the computer tJ.me required to obtain
solutions, For exa.mple, the time reqnlred to solve the governing equa-
tions on an IBM»360. computer for a\.?O;].ayered plate. and: m equal o
unitsr is'less than 3° seconds, whereas the time required to solve’

the equive.lent set of equativoné with no approximation introduced

(m = 20) is moré than 30 seconds.

Although the present theory is limited tu problems whlcn are kinematically

and cons tltutlvely linear, the variational development can be extended to

“include nonlinear strain-displacement relations, Since many fiber com-

posites possess e;ssentially linear stress-strain re,lati'ons'hips,.l the jies-
tion of nomnlinear constitutive laws does not appear at thelpresent time

to pose a pressing problem. However, the Ieffect of lnterla.minar shear on
the behavior of comp051te plates and shells in the large deflection reglon
could be guite qlgnlf‘lcant and should be assegssed. ' The theoretical ana]ys1s
and - method of solutlon presented herein offers an attractive approach to

this problern

'
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APPENDIX I
STRAIN ENERGY DUE TO TRANSVERSE SHEAR

For a matrix material with in“inite shear rigidity, an element taken

from two adjacent lamnirae (see Figure 13a) distorts due to bending as
shown in Figure 13b; the relationship between the inplane and lateral
displacement functions is simply

ow -
v EE__:jEEL (42)

ox t

With finite shear rigidity of the matrix material, the cross section
(k)
Xz
Similar considerations apply to the distortioms-in the y-z plane.

experiences the additional rotation ¥ as indicated in Figure 13c.

Thus, the relationships between both the inplane and lateral displace-

ment functions and the transverse shearing strains become

L) e ow
2 t ox
(43)
(k) Ve " Ve OV
= s e L
i oy
The strain energy due to transverse shear is
n-1 Lb
. Get 2 2
k k
U, = z _z_ ff {[71(&)] + [73(rz)] }dxdy (Lk)
k=1 00

Introduction of Equations (43) into Equation (44) gives the final form

Ly

o ——



(a) Geometry of Two Adjacent Laminae

ow/ox

(b) Distortion of Element with Gy s

ofox )

(c) Distortion of Element with 0 < GB <o

Figure 13. Geometry of Transverse Shear Deformation.
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of the strain energy of transverse shear as

n-1 _ I b
- [(a__“k__z_
s

= 2 56 ox £

2
dw Vv, -V
+(__ k k+l) dxdy
oy it

L6

)2

(45)




APPENDIX II
REDUCTION OF THE NUMBER OF INDEPENDENT INPLANE DISPLACEMENT FUNCTIONS

The displacement functions W and V. k =1,8..., , aneall

k 2
functions of the x and y coordinates only; that is,

u = u (x,y) { e
k L k = 1,2, coeph

v = v (xy) (7
k s k=12,...,n

Due to the continuity of the deformed structure, there exist functions

F, = Fl(x,y,z) and F, = Fe(x,y,z) such that

Fl(x:y, zk) = uk(x;Y) ' (bF

e R = -
25, U 5 s | v {x,v) LG
‘)_\ IR PR y .."....,n ( 7

where 2y is the distance from a reference plane to the center of the

kth lamina (see Figure 1). The functions Fl “and F2 can be ex-

panded into a power series in z. These expansions are written as

* *
Fi(%,y,2) = uylxy) + 2w (xy) + ..
i zmu;(x,y) o (50
3* *
F2(x,y,z) = vo(x,y\ + 7 vl(x,y) R
T e o

The right-hand sides of Equations (50) and (51) have at most n terms

since, corresponding to any location on the reference surface, Fl and

F2 must pass through n points and, therefore, can be given by a n-1

degree polynomial in =z,

k7



Approximations of the functions F1 and [, are erfected by terminating
/ h

- <
the expansions given by Equations (50) and (51) with the m“"  term.
Avproximation of ¥, in this manner and introduction of the approximation
nto Egquations (M8) give
* . * + : *
W= Uy hzgug e bz
* 2 m *
Uy = Uy bozou . 25U
(52)
o * b + M *
U= Uy oz e bz uy
Equations (52) can be represented in vector-matrix form as
P * . f
¥ =Q-7 (53) |
where
*
Fuow

a’*ﬂﬁ $ (54) \\
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, ioN |

, : " fThus, Equations (53) and (56) represent the transformation of the 2n
k displacement functions W and Vie Yy k = 185 . A0 ," into the

. k2T % i

b , + 2(m + 1) generalized displacement functions’ w end v

k ;
W= 2,80, m '.'l‘he transﬁomtion is quitg useful in analyzing

1
1

. the behavior of thin, laminated ,: anisotropic flat and curved plates
since, normally, m <<n . ’

i
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b APPENDIX IIT

VARTATION OF TOTAL POTENTIAL ENERGY

'To establish the poverning equations of equilibrium and the associated
boundary conditions, a stationary value of the total potential energy,

" Fquation (.'9), is sought with respect to admissible variations in the
lateral displacement function w and the generalized inplane displace-

' ment vectors W ¥ and ¥V * . Although the variational process should,
in general, be carried out simultaneously with respect to w, ot * and
v E , the formulation of the present problem is such that no loss of
generality in the derivation is incurred by carrying out the variations
separately.

Variation of the total potential energy functional, Equation (29), with

respect to the displacement function w gives

Lb - — * — * — ¥
t o ov ou
ff g At A -1
00 R

5 (U+V) = + K
E ] 12 ox 23 ox 23 oy
- * o
ST oV tw T~
+ K22 C + = . C,.,2 « I 5w dxdy
a o
y | R

+

Gpt Ll ow O5w Ow Odw
—ff<2(n-l)——+——
2 56 Ox Ox dy oy

-E aﬂ -}?*T.ﬁ)*--e- ?-T- E*T-?* dxdy
i t Bx tay

L b Lb ow  Obw
-ff [pow] dxdy -ff N— —| axday = 0 (58)
il 56 ox Ox

Integration by parts leads to the following scalar differential equation

!

i 50
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and associated boundary conditions.

t e & g [ W'\ L, ¥
- - 1(]2- +K23- + +K,,2
3 ox Ox dy = dy
B Sp e _y S W
+=~= I" +Chh* I w=0Gt (nl)|=—=+—
R2 22 B axa ay2
(5]
Lr |t o 2w
+ GB B o + + NX —§ -p = 0 (59)
ox oy Ox
At x =0,L
ow J3 N ow
G, |t (n-1) — - B T |-N — }ow = O (60)
B X
ox ox
At y=10,b
ow T
GB[t(n-l)—-E’*-v’*] Bw = 0 (61)
oy

Variation of the total potential energy functional, Equation (29), with

respect to the generalized displacement vector T * gives
i Iy
Lb — * - * —y * — *
ff . (E* ou ) osu , (E'* oV ) 08U
ll . L] 12 ] .
S 6 ox X oy ox

T T
g (aa’* av’*) 38T (~* av’*) 8%
o | — + . +[C .
X ox

5, ,(U+V)
u

+
Q

33 dy ox oy 133
o T o X % T "
(~* ou ) RIS — ou ) o5u
+1C ¢ — . +1C . .
13 ¥ ox 13 ox oy
T
AT W S g R
+ 023 g . - - Klg . SLs K,_,S .
dy dy R ox R ° dy

dxdy



R g

where the identities expressed by Equation (30) have been utilized.

Integration by parts of Equation (62) leads to the following vector

differential equation of equilibrium and associated vector boundary

conditions.
v
-t C 0 -t C 0
11 58 12 Jxoy
(Baﬁ’* azv’*) L, &=
-t C N + -t C -
g " = X* v, dw
-2t C., ° bty ——t= K
13 Oxoy 23 oy R 12 3x
£ ow v G
+—R’23 a—-GB-B-’*g-+—B'K*'T1-’*=O (63)
R Yy x t
Af x =0,L
* *
3 I
t 1 . + t Cl? :
X
t (W*»faﬁ’*) K. 2 = 0
+ . - - 1) =
13 . : 12
x oy R (64)
At ¥ =0,b
(aﬁ’* v * L, ot
t C + +tC.,
33 \3 ax) 13 ax
¥ W 4T
+t6‘ . -? - i 53.’ = 0 (65)
23 5 23 R

Variation of the total potential emergy functiomal, Equation (29), with
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respect to the generalized displacement vector v * gives
T
Lb (&% v’ 4, & A
) (U+V)=fft Cop . +(C, h
7 50 dy oy ox oy
- * #* T * _ ¥ T *
= (au v ) 3V ( o ou ) 387
+|C o | =— 1+ . + ¢ — " —
33 oy ox ox 23 dy oy

T . T .

,, w7 ) 57 (.,, 7" ) 357
+|[C » . +1C . . .
( 23 ox oy 23 dy dx

3

1 /.. *\L
+-(A-v) &% " axdy = 0 (66)
where the identities expressed by Equation (30) have been utilized.
Integration by parts leads to the following vector differential equation

and associated vector boundary conditions.
2.9 % 2 *
3V = o

~
et C.. -t C O
22 Tay 12 " 55y
. (a%’* =y ., ="
-t C,, + -t C,,
3B\ oy RN
- 527* o 52'1'1'* t dw
-2t C., -t C, +- K., —
3wy B % r P
1 ow ow G
b B —-G B s B X7 = o0 (67)



At x = 0,1

R Ox dy
" W T
+t'€:’;3 -E’QB- .8V = 0 (68)
ox R
At y = O,b
L W xw "
t C,s + % Cs, e +1Chy
-y ¥
— OV L W L) ‘
+t Coq - Ky = p- BV = 0 (69)
ox R

Again it is noted that in Equation (59), Nx = 0 when bending problems
are considered and p = O when axial compression buckling problems are
considered.
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APPENDIX IV

METHOD OF SOLUTION FOR FLAT PLATES WITH ANISOTROPIC LAMINAE

For rectangular plates in which some fibers are not oriented parallel

to the plate edges, the governing differential equations do not possess

a closed-form solution consistent with the boundary conditions of simple

support,

Consequently, for this type of construction, a Rayleigh-Ritz

procedure is used in conjunction with the functional given by Equation
(29) to effect an approximate solution.

- *
The vectors u

by

where

with

R
]

and ¥V

a, +

= ?Bl"‘

-

efz + LN ] +

TEBQ + .. 4

ca

K%

T8y

8171 + 3272 + ... 4 gk’k

Q
e
[

a'j(x’y)
)
BJ(X,y,

7J(X:Y)

25

and the scalar function w are approximated

(70)
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e i ke e o0 i o

'y (76)

)
1i
N
—

and

: (77)

oy
I

Equations (70) can be written as

*

<1 €l
]
193]

*

. T (78)

R} ™
3
my

w =

With the introduction of Equatious (78) into Equations (23) with R —w=

and cognizance taken of the identities, Equations (30}, the total po-

Lb ' i

ST f ~ ~ . YR~ _y

ff {e'(°1+°6+2¢h+:§ °h) e
00

tential energy becomes

U+V =

ST B e

(Cont'd)

o1



-
A
B
—
>
bl
>

[
“|
o]

where

Q2

i

(80)

(Cont'd)

p ‘



LN S A bt i i bt st ad bl e ditie sad o b i o o o) g i A Bl A e s e aalind o ae s Lo sndihoa n
- ) . ks Bidiau Lo il G r

~ vJI‘ ~* ~
S 7 By Gt P
0:12 = o « A (0]
~ B T K* ~
¢13 = B Q * B

T
~ ~ ,.) .’* ~,
¢lh - 7’}( B e
~ =y E)*T ~
o = . .
15 7 Ty g J

Due to the form of Q@ and P as given by Equations (72) and (73), the
matrices SJ. given in Equations (80) have, in turn, a special form.
These matrices are equivalent to partitioned matrices in which the
number of submatrices equals the number of elements in E’;j , or A

*
and B L , respectively.

With

d = . | (81)

(82)

Wy
i

and ? as given by Equation (74), the submatrices are formed by multi-
~
plying their corresponding elements in Cij by the matrix product in-

volving the vectors ad . E’ , and ? or their derivatives. For example,
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ith O
wi 11
matrices given by the respective element of Cll times the gatrix

- T
& aix .

b4

assumed to be a 2 x 2 matrix, El is formed from Kour sub-

~%

Upon performing the integrations

U+Vv

t

2

el

m
n

#7

[}

ga’T.g 24?7 5, PeRT B T

8‘\2“’10)“‘dy o

i

Lb

2GB < '
2 JJ G :

00

'2GB Lb ‘
—_— JFJF 0. = dxdy :
% 15 2
00 ,

Lb
N ->T - - T
- . + . " )axd,
(n-1) Gy 5[5[ (7’x TetTy 7},) o

the total potential energy given by Equation (79) becomes




[ ] 0]
I t ~ ~T - ~ ~T T ] ,
5L(Sl--*sl)'e+(s3,,+.sh)'?'s5'g_ = 0 (85)
i % (§’§+~h)'. .é)'+(§£+32)-?-§2.§’ = 0 , (86)
! ! 4 ,
B R A
: 1
! " Lb ' . |
ff .[Nx;;tx'?,z' é’ﬁp?'] dxdy = 0 '+, (87)
' 00. , , i AT

The character:.stic f‘unctions 750
by Equaf,ions (T4), (81) and. (82),

' ' ' a, = cos
J
i 1 ! ]
63 = sin
' ’ 7; = sip

In view of Equations (80) and (88),
'tegrals g,j (3 =1,2,...,7) , Equations (83), cdn be effected with
respect to the functions cxJ s B 57 and 7y j = Subsequent substitution

of the integra.ted "gj functions

equations, Equatibns (85) througﬁ
eqﬁations. The solution of these

desired vectors e . 4 , and g
i

! \

Otj,and Bj (5= 1,2,3,4) given

respectively, are now tgken as

MK oy ) "
'sin < Lk ;

L

Je= 1,23, E

'the 'integration of the matrix in-

(3 =1,2,...,7) into the'Euler "
(87)’ leads to a set of algebraic’
algebraic equations ylelds the

d ' !
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APPENDIX V
EXPANSION OF GOVFRNING EQUATIONS AND BOUNDARY CONDITIONS
Ty CORRESPONDING TO A FIRST APPROXIMATION (m = 1) FOR
FIAT FPIATES (R —»); REDUCTION TO REISSNER PLATE THEORY

With the definitions

iy
I
Co ij i ij
t k_._:
H
1 ] \rl
Y (k)
Bij = 4_/_. Zk‘t Cij
k=1 ‘ (89)
. n l
' D,., = 2t o)
ij | k™ i
k= .
i l . i=123
i Jj =223

’
-

and m =1 , the governing differential equations, Equations (31) through
b ' (33), can be expanded to give the following five governing scalar equations
for the bending (Nx = 0) of flat plates (R S©)

o % o %
) Uy 0 uo 6
: ‘ o e g T
A ' ox axBy ay
3°vy ( | aev; vy
g Ros e 3 (o al  — —
. 13 6x2 12 33 bxay 23 By
' * 2 * 2 * z
T 5 uy d u o) u )
. +13l ,)+2B13—+B33—2
' ox~ Oxdy oy
o % 2 * 2 x
v o v v
l 1 1
, + — + (B, + B,,) + B = 0 (90)
f13 ox = 33 oxoy 23 Bye
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+

+

u
0 6] 0
A3z ” (Rp + As3) oy * Ay, .
2 % 2 * 2 ¥
A avo+azs..avo+A 2o
33 5 B pmy Bt
2 % N2 ¥ Celt
B aul+(13 +B)Oul+B au]
13 Bxg 12 33 OxOy 23 aye
D % o % o %
By, 3—2-1- + 2By, ° + By -a-:—l = 0 (91)
Ox Xy oy
5211; Bzug Bgu;
Bll — + 2313 + 333 -
ox Ox0y oy
v, v, BEVS
B3 5;5- + (Bl2 + BBB) v + Byg -
BzuI BzuI Bzuz
D. —— +2D.,, —= + D, —5—
11 3 1By Pyt
BEVI Bevz BQVI
D13 Tax + (D12 + D33) = + 1)23 8y2
ow
(n-1) GBt (ul - — ) = 0 (92)
ox
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Beus ; bzu* Beu;
B,, —=—+ (B,, + B._,) + B .
) - 33 12 Axdy 23 3y~
8" ')v (; azvg Bzvg
+ B, —t 2B —— B
33 5F 2 Sy 252
3%u) 2%u; 3%uy
+D,T+(D.+D) + Dy, ===
13 3x 33 12 Ixdy 23 oy
52\/; BZVI BEVI
+ D — + 2D + D -5
33 3 33 Oxdy = oy
. oW
+ (n-1) Ggt (vl - - ) = 0
d
y

(n-1) G,t
A=t/ b [axe

62w

+

3% Bu; BVI
5 - — - -p
oy ox oy

(93)

(94)

The boundary conditions associated with Equations (90) through (94) are
obtained by expanding Equations (34) through (39) for m=1 and R - ,
These expansions are straightforward and result in the following scalar

equations.
At x =0,L
Bu;
Ay o Ao
BuI
+ B — +B
11 Sx 12
Bv; du
A33 =
ox oy

av; (Bu; bv; )
+ Al3 g
oy oy ox
vy . v
—l-+313(:-i+—1) * 5u
y v b4
v dun
0 0
A SR T B
) 23 oy 13 X
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dy  Ox 13 3 23 dy
bv; Bu:) Bu; av;
Byy = + By — + By [ — + —
= dy “ dx dy Ox
»* * * *
- Bvl+D Bul+D Bul+8vl )
22 12T Y0\ =+ vy = 0
9 ox dy ox

/

For plates symmetric about their reference planes, the material constants
Bi,j vanish. Consequently,. the m:mbrar:e displacements, u; and v; ,
and the bending displacements, Yoy Vy, and w , uncouple and only
Equations (92), (93) and (94) are required to describe the plate behavior.
In addition, for homogeneous plates (n -» , t »0) , the material

constants become

\
Dl3 = D23 = 0
Djy = Dyp =D
D12 - vD ) (97)
D - D
33 2Zl+v$
Fh
(n-1) tGB - 0
y
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Thus, for homogeneous plates, Equations (92) through (94) red:

ce to
Pl 1-v P 14y 3 Fh . ow
-D = + B i — |+ (u.‘ -—) o {(98)
L Ox 2 oy 2 oxoyJ 2(1 + ) O
* o )
Paev* l-vw v82v* 1+vy Beu Fh . Ow
1 1 1 K S
- D ) + 7 + -+ V., = — = ) 4
[ 3y 2 ox 2 dxdy) 201 +w) "y
= [
- == ko kW 5 ¢ (100)
_E ! \ /
2(1 + v) 3x~ oy
Differentiation of Equations (98) and (99) with respect to x and 7,

respectively, and summation of the two resulting equaticns lead *c

2 e
(& 2)E2)- 21592
- D _+— — 4 — P
: ; 2(1 + v) oy
101)
Equation (100) gives
2(1 + v)p Bew ng
(-—- § o +—+— 102)
FA ox oy

Then, substitution of Equations (102) into Equation (101) results in
h2
6(1-v)

Equation (103) is of the same form as the governing equation in Reissn

D

7

nvkw

p+Dp (103)

er

\

plate theory.l7 The only difference between Equation (102) and the

governing equation of the Reissner plate theory appears in the coefficient

of the first term on the right-hand side of the egquation. This coef-

ficient is slightly different in the Reissner theory because the trans-

verse shearing stresses are assumed therein-to vary parabollicaliy

through

the cross section. For m =1 in the present analysis, the transverse

shearing stresses are constant through the thickness of the

SR B
plate.



